Public Member Functions | |
| void | deleteData () |
| InfoFilterData () | |
| void | resizeData (int sdim, int zdim) |
| ~InfoFilterData () | |
Public Attributes | |
| math::SquareMatrix * | covQ |
| Matrix Q covariance (process noise). | |
| math::Vector * | innov |
| Innovation (global residual). | |
| math::Vector * | invCovR |
| Inverse of matrix R measurement noise NOTE: We already get invCovR from the measurements! | |
| math::SquareMatrix * | matA |
| State transition matrix A. | |
| math::Matrix * | matH |
| Matrix H = Jacobian of measurement model. | |
| math::Matrix * | matHT |
| Transpose of H. | |
| math::SquareMatrix * | matI |
| just the identity-matrix I | |
| int | measDim |
| dimensions of measurement and state | |
| bool | mNullInfoMat |
| flag: if the information matrix is zero, then no output can be computed (mean, covariance)! | |
| math::SquareMatrix * | pPostInfoMat |
| Inverse error covariance O(k+1|k+1) = Information matrix. | |
| math::Vector * | pPostInfoVec |
| Information vector = O(k+1|k+1)*x(k+1|k+1). | |
| math::SquareMatrix * | pPriorInfoMat |
| Inverse error covariance O(k+1|k) = Information matrix. | |
| math::Vector * | pPriorInfoVec |
| Information vector = O(k+1|k)*x(k+1|k). | |
| int | stateLieDim |
| math::Matrix * | tmpMat |
| temporary support matrices | |
| math::Matrix * | tmpVec |
| opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::InfoFilterData | ( | ) |
| opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::~InfoFilterData | ( | ) |
| void opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::deleteData | ( | ) |
| void opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::resizeData | ( | int | sdim, | |
| int | zdim | |||
| ) |
| math::SquareMatrix* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::covQ |
Matrix Q covariance (process noise).
| math::Vector* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::innov |
Innovation (global residual).
| math::Vector* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::invCovR |
Inverse of matrix R measurement noise NOTE: We already get invCovR from the measurements!
| math::SquareMatrix* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::matA |
State transition matrix A.
| math::Matrix* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::matH |
Matrix H = Jacobian of measurement model.
| math::Matrix* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::matHT |
Transpose of H.
| math::SquareMatrix* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::matI |
just the identity-matrix I
| int opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::measDim |
dimensions of measurement and state
| bool opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::mNullInfoMat |
flag: if the information matrix is zero, then no output can be computed (mean, covariance)!
| math::SquareMatrix* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::pPostInfoMat |
Inverse error covariance O(k+1|k+1) = Information matrix.
| math::Vector* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::pPostInfoVec |
Information vector = O(k+1|k+1)*x(k+1|k+1).
| math::SquareMatrix* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::pPriorInfoMat |
Inverse error covariance O(k+1|k) = Information matrix.
| math::Vector* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::pPriorInfoVec |
Information vector = O(k+1|k)*x(k+1|k).
| int opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::stateLieDim |
| math::Matrix* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::tmpMat |
temporary support matrices
| math::Matrix* opentl::tracker::InfoFilter::InfoFilter::InfoFilterData::tmpVec |
1.5.8